Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel
スポンサーリンク
概要
- 論文の詳細を見る
Pairwise classification has many applications including network prediction, entity resolution, and collaborative filtering. The pairwise kernel has been proposed for those purposes by several research groups independently, and has been used successfully in several fields. In this paper, we propose an efficient alternative which we call a Cartesian kernel. While the existing pairwise kernel (which we refer to as the Kronecker kernel) can be interpreted as the weighted adjacency matrix of the Kronecker product graph of two graphs, the Cartesian kernel can be interpreted as that of the Cartesian graph, which is more sparse than the Kronecker product graph. We discuss the generalization bounds of the two pairwise kernels by using eigenvalue analysis of the kernel matrices. Also, we consider the N-wise extensions of the two pairwise kernels. Experimental results show the Cartesian kernel is much faster than the Kronecker kernel, and at the same time, competitive with the Kronecker kernel in predictive performance.
論文 | ランダム
- キリンデオヤ流域の水利用状況と水質
- ILO:化学物質の安全に関するワ-クショップ--非常に効果のあるやり方
- インドネシアにおける最近の労働事情--前レイバ-・アタッシェの眼を通して
- B-7-3 宛先明示型マルチキャストにおける配送順序最適化についての研究(B-7.情報ネットワーク,一般講演)
- 進行波形超音波モータの駆動メカニズム : ロータとステータの接触挙動