Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel
スポンサーリンク
概要
- 論文の詳細を見る
Pairwise classification has many applications including network prediction, entity resolution, and collaborative filtering. The pairwise kernel has been proposed for those purposes by several research groups independently, and has been used successfully in several fields. In this paper, we propose an efficient alternative which we call a Cartesian kernel. While the existing pairwise kernel (which we refer to as the Kronecker kernel) can be interpreted as the weighted adjacency matrix of the Kronecker product graph of two graphs, the Cartesian kernel can be interpreted as that of the Cartesian graph, which is more sparse than the Kronecker product graph. We discuss the generalization bounds of the two pairwise kernels by using eigenvalue analysis of the kernel matrices. Also, we consider the N-wise extensions of the two pairwise kernels. Experimental results show the Cartesian kernel is much faster than the Kronecker kernel, and at the same time, competitive with the Kronecker kernel in predictive performance.
論文 | ランダム
- 246 ピッチング運動をする弾性平板翼に作用する流体力の研究(S41-2 移動境界・連成(2),S41 移動境界・連成・振動と騒音問題)
- 固定宛先のマルチホップ無線通信における経路制御に関する一考察
- 241 円筒容器内で回転する角柱周りの流れの研究(S41-1 移動境界・連成(1),S41 移動境界・連成・振動と騒音問題)
- 緩衝形コンクリートプレーカの挙動解析と手腕系振動低減化
- 240 ジャイロミル形風車の周りの流れの解析(S41-1 移動境界・連成(1),S41 移動境界・連成・振動と騒音問題)