Global Weak Solutions of the Navier-Stokes System with Nonzero Boundary Conditions
スポンサーリンク
概要
- 論文の詳細を見る
Consider the Navier-Stokes equations in a smooth bounded domain Ω ⊂ R3 and a time interval [0, T), 0 < T ≤ ∞. It is well-known that there exists at least one global weak solution u with vanishing boundary values u|∂Ω = 0 for any given initial value u0 ∈ Lσ2(Ω), external force f = div F, F ∈ L2(0, T;L2(Ω)), and satisfying the strong energy inequality. Our aim is to extend this existence result to a much larger class of global in time "Leray-Hopf type" weak solutions u with nonzero boundary values u|∂Ω = g ∈ W1/2,2 (∂Ω). As for usual weak solutions we do not need any smallness condition on g; indeed, our generalized weak solutions u exist globally in time. The solutions will satisfy an energy estimate with exponentially increasing terms in time, but for simply connected domains the energy increases at most linearly in time.
論文 | ランダム
- 一般健診受診者の心拍数に関する研究 : 平均心拍数、徐脈者の年次推移について
- 自閉性障害
- A-01 West 症候群における大脳機能障害 : in vivo 1H-MRS による検討
- West症候群の脳幹機能 : in vivo ^1H-MRSによる検討
- 技術 抵抗膜でもマルチタッチ,操作感を高める開発進む (特集 タッチが起こす入力革新)