Evaluating Learning Algorithms to Support Human RuleEvaluation Based on Objective Rule Evaluation Indices
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we present an evaluation of learning algorithms of a novel rule evaluation support method for post-processing of mined results with rule evaluation models based on objective indices. Post-processing of mined results is one of the key processes in a data mining process. However, it is difficult for human experts to completely evaluate several thousands of rules from a large dataset with noise. To reduce the costs in such rule evaluation task, we have developed a rule evaluation support method with rule evaluation models that learn from a dataset. This dataset comprises objective indices for mined classification rules and evaluation by a human expert for each rule. To evaluate performances of learning algorithms for constructing the rule evaluation models, we have done a case study on the meningitis data mining as an actual problem. Furthermore, we have also evaluated our method with ten rule sets obtained from ten UCI datasets. With regard to these results, we show the availability of our rule evaluation support method for human experts.
- CODATAの論文
CODATA | 論文
- Selection, Appraisal, and Retention of Digital Scientific Data: Highlights of an ERPANET/CODATA Workshop
- Building a biodiversity content management system for science, education, and outreach
- A Distributed Cooperative Technology for Spatial Grid Computing
- An Overview of the Chinese UCG Program
- The British Geological Survey's New Geomagnetic Data Web Service