Enhancing the Robustness of the Posterior-Based Confidence Measures Using Entropy Information for Speech Recognition
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, the robustness of the posterior-based confidence measures is improved by utilizing entropy information, which is calculated for speech-unit-level posteriors using only the best recognition result, without requiring a larger computational load than conventional methods. Using different normalization methods, two posterior-based entropy confidence measures are proposed. Practical details are discussed for two typical levels of hidden Markov model (HMM)-based posterior confidence measures, and both levels are compared in terms of their performances. Experiments show that the entropy information results in significant improvements in the posterior-based confidence measures. The absolute improvements of the out-of-vocabulary (OOV) rejection rate are more than 20% for both the phoneme-level confidence measures and the state-level confidence measures for our embedded test sets, without a significant decline of the in-vocabulary accuracy.
論文 | ランダム
- 高強度鋼の超長疲労寿命挙動(機械工学科)
- シナリオ創発実践からの問題提起 : 「わからなさ」をどう扱うか(シナリオ創発)
- 大原總一郎ゆかりの地を歩く
- 〈大原美術館伝説〉の背景と真偽を検証する
- チボリ・ジャパン社最後の社長坂口正行さんの苦闘2年半 (特集 倉敷チボリ公園はなぜ閉園に追い込まれたか)