Enhancing the Robustness of the Posterior-Based Confidence Measures Using Entropy Information for Speech Recognition
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, the robustness of the posterior-based confidence measures is improved by utilizing entropy information, which is calculated for speech-unit-level posteriors using only the best recognition result, without requiring a larger computational load than conventional methods. Using different normalization methods, two posterior-based entropy confidence measures are proposed. Practical details are discussed for two typical levels of hidden Markov model (HMM)-based posterior confidence measures, and both levels are compared in terms of their performances. Experiments show that the entropy information results in significant improvements in the posterior-based confidence measures. The absolute improvements of the out-of-vocabulary (OOV) rejection rate are more than 20% for both the phoneme-level confidence measures and the state-level confidence measures for our embedded test sets, without a significant decline of the in-vocabulary accuracy.
論文 | ランダム
- H308 有機溶剤曝露労働者における尿中代謝産物検出数による身体影響の検討
- 硬膜外麻酔分娩時に気を付けねばならない循環動態の変化は? (特集 取り返しのつかない事態を防ぐために 妊産褥婦の循環動態を知ろう!)
- 胎児心拍異常時の対応 (臨床必携 分娩監視CTGの読み方--その時どうする)
- H307 トリクロロエチレン投与後の臓器中代謝産物の濃度
- 単語概念ベクトルを用いた文書群からの代表語抽出(テーマ,膨大なデータから学ぶもの)