統計的機械翻訳のためのマージン最大化学習 : 機械翻訳精度向上に向けて
スポンサーリンク
概要
- 論文の詳細を見る
Minimum error rate training (MERT) has been a widely used learning method for statistical machine translation to estimate the feature function weights of a linear model. MERT has an advantage to incorpolate an automatic translation evaluation metrics as BLEU scores to its objective function. Weight vector can directly be optimized with Line search algorithm using error surface on a given set of candidate translations. It efficiently searches the best parameter resulting the highest BLEU scores. In this paper, we presented a new training algorithm for statisitcal machine translation, inspired by MERT and Structural Support Vector Machines. We performed MERT optimization by maximizing the margin between the oracle and incorrect translations under the L2-norm prior. Our experimental results on Japanese-English speech translation task showed that BLEU scores obtained by our proposed method were much better than those obtained by MERT. We achieved the best improvement of BLEU about +3.0 over standard MERT.
論文 | ランダム
- B-4-54 8の字ループアンテナ曝露装置の局所性向上に関する検討(B-4.環境電磁工学,一般講演)
- B-4-29 サーモグラフィ法を用いた1週齢ラットファントム内SAR分布の測定(B-4.環境電磁工学,一般講演)
- B-4-10 IHクッキングヒータ用コイルの近傍に配置したシールド材の効果(B-4.環境電磁工学,一般講演)
- 妊娠・出生ラットに対する2GHz帯全身無拘束曝露のドシメトリ解析(EMC関連(1),EMC/EMD/一般)
- 妊娠・出生ラットに対する2GHz帯全身無拘束曝露のドシメトリ解析(EMC関連(1),EMC/EMD/一般)