統計的機械翻訳のためのマージン最大化学習 : 機械翻訳精度向上に向けて
スポンサーリンク
概要
- 論文の詳細を見る
Minimum error rate training (MERT) has been a widely used learning method for statistical machine translation to estimate the feature function weights of a linear model. MERT has an advantage to incorpolate an automatic translation evaluation metrics as BLEU scores to its objective function. Weight vector can directly be optimized with Line search algorithm using error surface on a given set of candidate translations. It efficiently searches the best parameter resulting the highest BLEU scores. In this paper, we presented a new training algorithm for statisitcal machine translation, inspired by MERT and Structural Support Vector Machines. We performed MERT optimization by maximizing the margin between the oracle and incorrect translations under the L2-norm prior. Our experimental results on Japanese-English speech translation task showed that BLEU scores obtained by our proposed method were much better than those obtained by MERT. We achieved the best improvement of BLEU about +3.0 over standard MERT.
論文 | ランダム
- 特集 批判的〈知〉の復権
- 先端黄白化症抵抗性キヌサヤエンドウ'伊豆みどり'の育成とその特性
- 受傷後36年目に独居,就労を果たした頚髄損傷例への支援~地域における作業療法の役割~
- 平成22年度自販連経営セミナー概要 新興国における微型車・小型車セグメントの国際比較--日本自動車メーカーのマーケティング戦略を考える(前編)
- Civil society and Islamic NGOs in secular Turkey and their nationwide and global initiatives: the case of the Gulen movements (特集 イスラーム的NGOの多様性)