Predicting DataSpace Retrieval Using Probabilistic Hidden Information
スポンサーリンク
概要
- 論文の詳細を見る
This paper discusses the issues involved in the design of a complete information retrieval system for DataSpace based on user relevance probabilistic schemes. First, Information Hidden Model (IHM) is constructed taking into account the users perception of similarity between documents. The system accumulates feedback from the users and employs it to construct user oriented clusters. IHM allows integrating uncertainty over multiple, interdependent classifications and collectively determines the most likely global assignment. Second, Three different learning strategies are proposed, namely query-related UHH, UHB and UHS (User Hidden Habit, User Hidden Background, and User Hidden keyword Semantics) to closely represent the user mind. Finally, the probability ranking principle shows that optimum retrieval quality can be achieved under certain assumptions. An optimization algorithm to improve the effectiveness of the probabilistic process is developed. We first predict the data sources where the query results could be found. Therefor, compared with existing approaches, our precision of retrieval is better and do not depend on the size and the DataSpace heterogeneity.
論文 | ランダム
- 199) 肺結核における肺胞動脈酸素較差について(日本循環器學會第19回總會記事)
- Allyl isothiocyanateの糖試薬に対する反応
- Allyl isothiocyanateの糖試験に対する反応
- 人工材料(有機)-この1年の進歩
- (未来医学事典)材料表面のミクロ構造による細胞機能制御 血小板活性化抑制