High-Speed Low-Complexity Architecture for Reed-Solomon Decoders
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents a high-speed, low-complexity VLSI architecture based on the modified Euclidean (ME) algorithm for Reed-Solomon decoders. The low-complexity feature of the proposed architecture is obtained by reformulating the error locator and error evaluator polynomials to remove redundant information in the ME algorithm proposed by Truong. This increases the hardware utilization of the processing elements used to solve the key equation and reduces hardware by 30.4%. The proposed architecture retains the high-speed feature of Truongs ME algorithm with a reduced latency, achieved by changing the initial settings of the design. Analytical results show that the proposed architecture has the smallest critical path delay, latency, and area-time complexity in comparison with similar studies. An example RS(255, 239) decoder design, implemented using the TSMC 0.18µm process, can reach a throughput rate of 3Gbps at an operating frequency of 375MHz and with a total gate count of 27, 271.
論文 | ランダム
- スコットランド坑夫繋縛制変遷概観(1)
- 引上法による金属酸化物単結晶の作成(新物質・新結晶)
- 18世紀初頭ウェスト・ライディングにおける炭鉱経営(2)
- UO2単結晶(新物質・新結晶)
- イギリス中世炭鉱リースの諸特徴