ニューラルネットワークと回帰式を適用した連接水系ダム残流予測システムの開発
スポンサーリンク
概要
- 論文の詳細を見る
This paper describes a water flow forecasting system for dams using neural networks and regression models. Water flow forecasting task is very important for reliable and economic operation. Many conventional methods have been used. They take much time to develop an accurate forecasting system, because it is difficult to adjust parameters.Water flow forecasting system for dams, which have much flood data, can be developed by neural networks. On the contrary, that system for dams, which have few flood data, must be developed by regression models. The system has been used for three years at Tadami/Agano river basin to assure forecasting performance by the proposed method.
論文 | ランダム
- 3-1 ネットワークアプリケーション(3.インターネットのサービス)(広がるインターネットの世界)
- ソフトウェア環境への属性文法の応用 ( 属性文法とその応用-V)
- 32ビットマイクロプロセッサTXシリーズ用Cコンパイラの最適化手法
- 3. レイアウト設計におけるCAD 3.4 シンボリック・レイアウト設計手法 (論理装置CADの最近の動向)
- Numerical Solutions of the Two Dimensional Impurity Atom Distribution in a Planar P-N Junction