Farsi handwritten digit recognition based on mixture of RBF experts
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, a new classifier combination model is presented for Farsi handwritten digit recognition. The model is consisted of four RBF neural networks as the experts and another RBF network as the gating network which learns to split the input space between the experts. Considering the input data, which is an 81-element vector extracted using the loci characterization method, the gating network assigns a competence coefficient to each expert. The final output is computed as the weighted sum of the outputs of the experts. The recognition rate of the proposed model is 93.5% which is 3.75% more than the rate of the mixture of MLPs experts previously ran on the same database.
論文 | ランダム
- 海水で汚染されている地域における安定液の分散解膠剤
- 「R22, R502代替冷媒国際シンポジウム'94」に参加して
- 細菌の感染機序に関する総合的研究 : 第1報 菌体加熱上清の正常血清殺菌作用に及ぼす影響について
- 物理の道しるべ--研究者の道とは何か(13)マイノリティの道を歩んできて
- エンタングルメント--量子の世界のみちしるべ (エンタングルメント理論とその展開--"量子もつれ"のミステリー)