Mechanisms of Human Sensorimotor-Learning and Their Implications for Brain Communication
スポンサーリンク
概要
- 論文の詳細を見る
Humans have a remarkable ability to flexibly control various objects such as tools. Much evidence suggests that the internal models acquired in the central nervous system (CNS) support flexible control. Internal models are neural mechanisms that mimic the input-output properties of controlled objects. In a series of functional magnetic resonance imaging (fMRI) studies, we demonstrate how the CNS acquires and switches internal models for dexterous use of many tools. In the first study, we investigated human cerebellar activity when human subjects learned how to use a novel tool (a rotated computer mouse, where the cursor appears in a rotated position) and found that activity reflecting an internal model of the novel tool increases in the lateral cerebellum after learning how to use the tool. In the second study, we investigated the internal-model activity after sufficient training in the use of two types of novel tools (the rotated mouse and a velocity mouse, where the cursors velocity is proportional to mouses position) and found that the cerebellar activities for the two tools were spatially segregated. In the third study, we investigated brain activity associated with the flexible switching of tools. We found that the activity related to switching internal models was in the prefrontal lobe (area 46 and the insula), the parietal lobe, and the cerebellum. These results suggest that internal models in the cerebellum represent input-output properties of the tools as modulators of continuous signals. The cerebellar abilities in adaptive modulation of signals can be used to enhance the control signals in communications between the brain and computers.
論文 | ランダム
- シンボル列化したシーンの学習と2種のプレイ種相関度による野球放送映像プレイ種識別(画像・映像処理)
- Cross-Bootstrapping:特許文書からの課題・効果表現対の自動抽出手法(テキストマイニング,情報爆発論文)
- シェ-グレン症候群の病態発現へのIL-18とTh17細胞の関与(受賞報告,歯学情報)
- オンライン上のゲートキーピングの歴史(2)
- Limited thymectomy for stage I or II thymomas