How the Number of Interest Points Affect Scene Classification
スポンサーリンク
概要
- 論文の詳細を見る
This paper focuses on the relationship between the number of interest points and the accuracy rate in scene classification. Here, we accept the common belief that more interest points can generate higher accuracy. But, few effort have been done in this field. In order to validate this viewpoint, in our paper, extensive experiments based on bag of words method are implemented. In particular, three different SIFT descriptors and five feature selection methods are adopted to change the number of interest points. As innovation point, we propose a novel dense SIFT descriptor named Octave Dense SIFT, which can generate more interest points and higher accuracy, and a new feature selection method called number mutual information (NMI), which has better robustness than other feature selection methods. Experimental results show that the number of interest points can aggressively affect classification accuracy.
論文 | ランダム
- OP-286 MR spectroscopyを用いた限局性前立腺癌の局在診断(一般演題口演,第94回日本泌尿器科学会総会)
- OP-263 限局性前立腺癌に対する高密度焦点式超音波治療(High-intensity focused Ultrasound : HIFU)(一般演題口演,第94回日本泌尿器科学会総会)
- OP-060 副腎腫瘍の診断・治療におけるCRHテストの有用性の検討(一般演題口演,第94回日本泌尿器科学会総会)
- W-H-4 気道内 stent 留置術に対する 3D-CT の応用 : 気道内計測による size 決定(呼吸器疾患に対する胸部 3 次元 CT による画像診断)(第 17 回日本気管支学会総会)
- 61. 胎児肺型肺腺癌の2例(第60回日本肺癌学会関西支部会)