強化学習問題のための分布推定アルゴリズム
スポンサーリンク
概要
- 論文の詳細を見る
Estimation of Distribution Algorithms (EDAs) are a promising evolutionary computation method. Due to the use of probabilistic models, EDAs can outperform conventional evolutionary computation. In this paper, EDAs are extended to solve reinforcement learning problems which are a framework for autonomous agents. In the reinforcement learning problems, we have to find out better policy of agents such that it yields a large amount of reward for the agents in the future. In general, such policy can be represented by conditional probabilities of agents actions, given the perceptual inputs. In order to estimate such a conditional probability distribution, Conditional Random Fields (CRFs) by Lafferty (2001) are introduced into EDAs. The reason why CRFs are adopted is that CRFs are able to learn conditional probabilistic distributions from a large amount of input-output data, i.e., episodes in the case of reinforcement learning problems. Computer simulations on Probabilistic Transition Problems and Perceptual Aliasing Maze Problems show the effectiveness of EDA-RL.
論文 | ランダム
- 含リン汚泥焼成灰の農業資材としての有用性
- 大阪市視学・鈴木治太郎の知能測定法標準化と「適能教育」論の提唱 : 1920年代の大阪市における特別学級編制を通して(21-【A】教育史(2),2 一般研究発表II,発表要旨)
- 含リン汚泥の新規用途の開発--汚泥焼成灰の農業資材としての可能性
- 軽度発達障害を有する高校生の学校生活における困難とニーズ : 軽度知的障害を含む軽度発達障害の高校生への本人調査から
- 含リン汚泥の新規用途の開発--汚泥焼成灰の諸物性