強化学習問題のための分布推定アルゴリズム
スポンサーリンク
概要
- 論文の詳細を見る
Estimation of Distribution Algorithms (EDAs) are a promising evolutionary computation method. Due to the use of probabilistic models, EDAs can outperform conventional evolutionary computation. In this paper, EDAs are extended to solve reinforcement learning problems which are a framework for autonomous agents. In the reinforcement learning problems, we have to find out better policy of agents such that it yields a large amount of reward for the agents in the future. In general, such policy can be represented by conditional probabilities of agents actions, given the perceptual inputs. In order to estimate such a conditional probability distribution, Conditional Random Fields (CRFs) by Lafferty (2001) are introduced into EDAs. The reason why CRFs are adopted is that CRFs are able to learn conditional probabilistic distributions from a large amount of input-output data, i.e., episodes in the case of reinforcement learning problems. Computer simulations on Probabilistic Transition Problems and Perceptual Aliasing Maze Problems show the effectiveness of EDA-RL.
論文 | ランダム
- G153 慶応大学湘南藤沢キャンパスにおけるエネルギー需要実態と供給システムの検討(一般セッション 熱機関・システムII)
- 434 UMLとJAVAを用いたエネルギー供給に関するプログラム開発 : 慶應義塾大学湘南藤沢キャンパスのコージェネレーションシステム(エネルギーマネジメントおよびCGS I,環境保全型エネルギー技術)
- 全内臓逆位を伴った Cushing 症候群の1例
- 関節リウマチ (特集 慢性炎症と疾患--病態解明と治療の新展開) -- (病態と治療)
- Enrichment of natural radium isotopes in the southern South China Sea surface sediments (Special section for JSPS multilateral core university program on "coastal marine science": proceedings on 4th JSPS-VAST joint seminar on 'coastal marine science', Hai