強化学習問題のための分布推定アルゴリズム
スポンサーリンク
概要
- 論文の詳細を見る
Estimation of Distribution Algorithms (EDAs) are a promising evolutionary computation method. Due to the use of probabilistic models, EDAs can outperform conventional evolutionary computation. In this paper, EDAs are extended to solve reinforcement learning problems which are a framework for autonomous agents. In the reinforcement learning problems, we have to find out better policy of agents such that it yields a large amount of reward for the agents in the future. In general, such policy can be represented by conditional probabilities of agents actions, given the perceptual inputs. In order to estimate such a conditional probability distribution, Conditional Random Fields (CRFs) by Lafferty (2001) are introduced into EDAs. The reason why CRFs are adopted is that CRFs are able to learn conditional probabilistic distributions from a large amount of input-output data, i.e., episodes in the case of reinforcement learning problems. Computer simulations on Probabilistic Transition Problems and Perceptual Aliasing Maze Problems show the effectiveness of EDA-RL.
論文 | ランダム
- マレーシア商業銀行の確率的費用関数の推計と銀行再編への政策的なインプリケーション
- 東南アジアの金融システムと改革の方向性 (焦点 東アジア経済発展の展望)
- The Production Technology of Philippine Domestic Banks in the Pre-Asian Crisis Period : Estimation of Cost Function in the 1990-96 Period
- 「外資主導工業化」と ASEAN 諸国の銀行業 : 金融自由化政策と銀行経営
- 「現代の開発金融」入門