社会ネットワークにおける有力ノード抽出のための情報拡散モデルの学習
スポンサーリンク
概要
- 論文の詳細を見る
We address the problem of ranking influential nodes in complex social networks by estimating diffusion probabilities from observed information diffusion data using the popular independent cascade (IC) model. For this purpose we formulate the likelihood for information diffusion data which is a set of time sequence data of active nodes and propose an iterative method to search for the probabilities that maximizes this likelihood. We apply this to two real world social networks in the simplest setting where the probability is uniform for all the links, and show that when there is a reasonable amount of information diffusion data, the accuracy of the probability is outstandingly good, and the proposed method can predict the high ranked influential nodes much more accurately than the well studied conventional four heuristic methods.
論文 | ランダム
- 小咄の創り方(7)誇張と矮小化
- 小咄の創り方(6)神様は三がお好き
- 溶融炭酸塩型燃料電池用セパレ-タ材の高温腐食に及ぼす浸炭の影響
- 小咄の創り方(5)木を見せてから森を見せる
- 18Cr12Ni2Mo鋼の溶融炭酸塩中腐食に及ぼす塩組成の影響