社会ネットワークにおける有力ノード抽出のための情報拡散モデルの学習
スポンサーリンク
概要
- 論文の詳細を見る
We address the problem of ranking influential nodes in complex social networks by estimating diffusion probabilities from observed information diffusion data using the popular independent cascade (IC) model. For this purpose we formulate the likelihood for information diffusion data which is a set of time sequence data of active nodes and propose an iterative method to search for the probabilities that maximizes this likelihood. We apply this to two real world social networks in the simplest setting where the probability is uniform for all the links, and show that when there is a reasonable amount of information diffusion data, the accuracy of the probability is outstandingly good, and the proposed method can predict the high ranked influential nodes much more accurately than the well studied conventional four heuristic methods.
論文 | ランダム
- NHK 第41回衆議院選挙報道への取り組み
- 「身体障害者」の与えられた生〔府中療育センター強制移転反対闘争〕
- リチウムイオン導電体LiZr2(PO4)3を用いた海水からのリチウム回収
- 日本語音調の諸相
- 英文法記述における同一要素〔第2回言語学懸賞2等当選論文〕