社会ネットワークにおける有力ノード抽出のための情報拡散モデルの学習
スポンサーリンク
概要
- 論文の詳細を見る
We address the problem of ranking influential nodes in complex social networks by estimating diffusion probabilities from observed information diffusion data using the popular independent cascade (IC) model. For this purpose we formulate the likelihood for information diffusion data which is a set of time sequence data of active nodes and propose an iterative method to search for the probabilities that maximizes this likelihood. We apply this to two real world social networks in the simplest setting where the probability is uniform for all the links, and show that when there is a reasonable amount of information diffusion data, the accuracy of the probability is outstandingly good, and the proposed method can predict the high ranked influential nodes much more accurately than the well studied conventional four heuristic methods.
論文 | ランダム
- Antiemetic effects of granisetron and dexamethasone combination therapy during cisplatin-containing chemotherapy for head and neck cancer : dexamethasone dosage verification trial
- 狭ピッチに対応した高信頼性COG(Chip On Glass)接続技術
- COF技術動向から求められるFPCの課題(薄形化に対応する実装材料)
- COF技術動向から求められるFPCの課題
- タイミング歩留まり改善を目的とする演算カスケーディング