Robust Feature Extraction Using Variable Window Function in Autocorrelation Domain for Speech Recognition
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents a new feature extraction method for robust speech recognition based on the autocorrelation mel frequency cepstral coefficients (AMFCCs) and a variable window. While the AMFCC feature extraction method uses the fixed double-dynamic-range (DDR) Hamming window for higher-lag autocorrelation coefficients, which are least affected by noise, the proposed method applies a variable window, depending on the frame energy and periodicity. The performance of the proposed method is verified using an Aurora-2 task, and the results confirm a significantly improved performance under noisy conditions.
論文 | ランダム
- 36 気管支内視鏡検査におけるパルスオキシメータの有用性について(気管支鏡検査と低酸素血症)(第 16 回日本気管支学会総会)
- 柿渋の伝統的製造法について
- セメントレス人工股関節置換術後のインプラント周囲の骨透亮像発生因子の検討
- Bombelli 手術後の大腿骨頭リモデリングのX線像解析
- 人工膝関節置換術後の膝蓋大腿関節アライメントとコンポネント設置位置、角度との関係