自己組織化ネットワークによる動的クラスタの可視化編纂
スポンサーリンク
概要
- 論文の詳細を見る
We have been developing a neural network-based approach for visual information compilation. We have extended the Self-Organizing Map (SOM) model by introducing a sequencing weight function into the neuron topology, called Sequence-based SOM (SbSOM). SbSOM visualizes the dynamics of various clusters such as their generation or extinction, convergence or divergence, and merging or division. By utilizing the neuron topology and the neighborhood function of SOM, SbSOM can mitigate the problems associated to the conventional sliding-window method. We clarified a target problem class of SbSOM and confirmed the basic properties of this proposed method using a two-dimensional simulated sequential dataset. Moreover, our experiment using a dataset of real-world news articles indicates that topic transition can indeed be seen from the acquired map. Visualization of cluster sequential changes aids in the comprehension of such phenomena which come useful in various domains such as fault diagnosis and medical check-up, among others.
論文 | ランダム
- けい酸カルシウム水和物を種結晶とした晶析脱りん法 (第38回下水道研究発表会講演集 平成13年度) -- (口頭発表セッション セッション7 水処理・再利用)
- 晶析脱りん法種結晶材(珪酸カルシウム水和物)の肥料への適用性について (第37回下水道研究会発表会講演集) -- (口頭発表セッション7 水処理・再利用)
- 修景利用を目的とした下水二次処理水の晶析脱りんとその藻類の抑制について (第37回下水道研究会発表会講演集) -- (口頭発表セッション4 水環境)
- 珪酸カルシウム水和物を種結晶とした晶析脱リン法--返流水への適用 (第36回下水道研究発表会講演集) -- (口頭発表セッション セッション8 汚泥処理・処分・利用)
- Effectiveness of newly-designed electric fences in reducing crop damage by medium and large mammals