自己組織化ネットワークによる動的クラスタの可視化編纂
スポンサーリンク
概要
- 論文の詳細を見る
We have been developing a neural network-based approach for visual information compilation. We have extended the Self-Organizing Map (SOM) model by introducing a sequencing weight function into the neuron topology, called Sequence-based SOM (SbSOM). SbSOM visualizes the dynamics of various clusters such as their generation or extinction, convergence or divergence, and merging or division. By utilizing the neuron topology and the neighborhood function of SOM, SbSOM can mitigate the problems associated to the conventional sliding-window method. We clarified a target problem class of SbSOM and confirmed the basic properties of this proposed method using a two-dimensional simulated sequential dataset. Moreover, our experiment using a dataset of real-world news articles indicates that topic transition can indeed be seen from the acquired map. Visualization of cluster sequential changes aids in the comprehension of such phenomena which come useful in various domains such as fault diagnosis and medical check-up, among others.
論文 | ランダム
- ゴム手袋による接触蕁麻疹の13例
- 歯科学生におけるラテックスアレルギーに関する免疫学的皮膚科学的調査
- 1132 大学正課体育における平行棒の指導に関する研究
- ラテックスグローブによって生じた接触皮膚炎
- 歯科医療従事者に現れたラテックスグローブによる接触皮膚炎