部分空間法に基づく変化点検知アルゴリズム
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we propose a class of algorithms for detecting the change-points in time-series data based on subspace identification, which is originaly a geometric approach for estimating linear state-space models generating time-series data. Our algorithms are derived from the principle that the subspace spanned by the columns of an observability matrix and the one spanned by the subsequences of time-series data are approximately equivalent. In this paper, we derive a batch-type algorithm applicable to ordinary time-series data, i.e., consisting of only output series, and then introduce the online version of the algorithm and the extension to be available with input-output time-series data. We illustrate the superior performance of our algorithms with comparative experiments using artificial and real datasets.
論文 | ランダム
- 共分散構造化データマイニングにおける数値積分法(一般,制御システムとダイナミックス)
- CNNを用いた時系列データの予測
- 決定木を用いたクラスターの自動生成
- 大学病院--課題と展望(4)大学病院経営におけるDPCの課題と展望
- 日本自己血輸血学会設立20周年に向けて