部分空間法に基づく変化点検知アルゴリズム
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we propose a class of algorithms for detecting the change-points in time-series data based on subspace identification, which is originaly a geometric approach for estimating linear state-space models generating time-series data. Our algorithms are derived from the principle that the subspace spanned by the columns of an observability matrix and the one spanned by the subsequences of time-series data are approximately equivalent. In this paper, we derive a batch-type algorithm applicable to ordinary time-series data, i.e., consisting of only output series, and then introduce the online version of the algorithm and the extension to be available with input-output time-series data. We illustrate the superior performance of our algorithms with comparative experiments using artificial and real datasets.
論文 | ランダム
- Symposia第二部門「身体とボディ・ポリティック-ルネサンス・内乱期・王政復古期」(日本英文学会第72回大会報告)
- マクドナルドの意味論 (特集 アメリカを読み解く--地域研究へのアプローチ)
- 利益相反および忠実義務の再検証
- 敵対的買収における委任状勧誘への問題と対応--アメリカでの実務・先例を参考に
- 米国対内投資規制の改正と実務への影響