非定常データに対するSparse Bayesian Learning
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes an online Sparse Bayesian Learning (SBL) algorithm for modeling nonstationary data sources. Although most learning algorithms implicitly assume that a data source does not change over time (stationary), one in the real world usually does due to such various factors as dynamically changing environments, device degradation, sudden failures, etc (nonstationary). The proposed algorithm can be made useable for stationary online SBL by setting time decay parameters to zero, and as such it can be interpreted as a single unified framework for online SBL for use with stationary and nonstationary data sources. Tests both on four types of benchmark problems and on actual stock price data have shown it to perform well.
論文 | ランダム
- エストロジェン (ホルモンレセプタ-をめぐる知見) -- (ステロイドホルモンレセプタ-)
- エストロゲン (ホルモン作用への生化学的アプローチ(特集)) -- (細胞内ホルモンレセプターの生化学)
- 土の中のドラマ : 土壌微生物の織りなす世界(雑木林の世界)
- 森林生態系における土壌微生物の役割り(森林と微生物の共存)
- 医療におけるRPの現状