Shear Fatigue Response of Cracked Concrete Interface
スポンサーリンク
概要
- 論文の詳細を見る
The shear fatigue behavior of cracked concrete interface was experimentally investigated on a single crack plane to quantify the degree of deterioration per load cycle. A simple experimental setup was used, in which a finite lateral stiffness was provided to the crack interface by using unbonded steel bars. The effects of loading amplitude, loading pattern and water exposure were examined. Time-dependent behavior of shear transfer under sustained shear load was also investigated. The shear fatigue response of cracked concrete interface was found to be characterized by gradual increments of shear slip and dilation and majority of the incremental displacements to occur in the first few cycles. The degree of deterioration was found to be highly sensitive to the load amplitude level and loading pattern. The relative extent of deterioration in the case of reversed cyclic loading was much larger than that of single-sided fatigue loading. Worse yet, the downward flow of water through the crack interface was found to accelerate the shear fatigue degradation. The experimental results are summarized and a simplified phenomenological model is proposed to quantify the degeneration of shear stiffness in terms of intrinsic accumulated normalized slip with respect to crack opening.
- 公益社団法人 日本コンクリート工学会の論文
公益社団法人 日本コンクリート工学会 | 論文
- セメントの水和反応と硬化組織
- 城郭の石垣
- 鉄筋コンクリート研究小史
- 構成要素論から見たセメント工学
- Experimental Study on Bond-Strengthening Hooks for RC Beams