Spatially Dependent Self-Shielding Method with Temperature Distribution for the Two-Dimensional Transport Code PARAGON
スポンサーリンク
概要
- 論文の詳細を見る
The Spatially Dependent Dancoff Method (SDDM) was recently developed to evaluate the power distribution within a fuel rod that has spatial variation of isotopic contents. The method was validated and verified by comparison to Monte Carlo calculations and measurements. However, those evaluations and comparisons were based on the assumption that the temperature distribution within a rod is flat. In this study, an equation used in the SDDM is enhanced in order to more accurately treat the temperature distribution. The enhancement was carried out with the knowledge that a Monte Carlo calculation shows no effect of temperature distribution on spatial flux within a rod. This leads to the cancellation of reaction rate changes due to temperature distribution between inner and outer regions within a rod. The knowledge gained from these evaluations was then applied to the equation used in the SDDM with the temperature distribution. The improved SDDM was validated and verified by comparison to MCNP4C calculations. PARAGON with the improved SDDM is now capable of performing micro-nuclear physics calculations with greater accuracy.
- 社団法人 日本原子力学会の論文
著者
-
TAKEDA Toshikazu
Osaka University
-
Takeda Toshikazu
Div. Of Sustainable Energy And Enviromental Engineering Graduate School Of Engineering Osaka Univ.
-
Takeda Toshikazu
Department Of Sustainable Energy And Environmental Engineering Graduate School Of Engineering Osaka
-
MATSUMOTO Hideki
Mitsubishi Heavy Industries, Ltd.
-
OUISLOUMEN Mohamed
Westinghouse Electric Company
-
Matsumoto Hideki
Method And Software Development Group Reactor Core Engineering Department Mitsubishi Heavy Industrie
-
Takeda Toshikazu
Division Of Sustainable Energy And Environmental Engineering Graduate School Of Engineering Osaka Un
-
Matsumoto Hideki
Mitsubishi Heavy Industries Ltd.
関連論文
- Analysis of the Main Steam Line Break Benchmark (Phase II) Using ANCK/MIDAC Code
- Simple and Efficient Parallelization Method for MOC Calculation
- Analysis of the SPERT-III E-Core Using ANCK Code with the Chord Weighting Method
- The Verification of 3 Dimensional Nodal Kinetics Code ANCK Using Transient Benchmark Problems
- Prediction Accuracy Improvement of Neutronic Characteristics of a Breeding Light Water Reactor Core by Extended Bias Factor Methods with Use of FCA-XXII-1 Critical Experiments
- Depletion Calculations for PWR Assemblies including Burnable Absorbers with Lattice Code PARAGON
- Spatially Dependent Self-Shielding Method with Temperature Distribution for the Two-Dimensional Transport Code PARAGON
- Development of Spatially Dependent Resonance Shielding Method
- Applicability of Constant Flux Approximation in Method of Characteristics with Filtering to Tiny Regions
- Theoretical Study on New Bias Factor Methods to Effectively Use Critical Experiments for Improvement of Prediction Accuracy of Neutronic Characteristics
- A Fast and Simplified Method to Calculate Exponential of Burnup Matrix
- Generalized Bias Factor Method for Accurate Prediction of Neutronics Characteristics
- Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models
- Verification of 3D Heterogeneous Core Transport Calculation Utilizing Non-linear Iteration Technique
- Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY
- Spatially Dependent Self-Shielding Method with Temperature Distribution for the Two-Dimensional Transport Code PARAGON
- Neutron Spectrum Calculation Code HARPY for Hexagonal Assembly.