Electronically resonant third-order sum frequency generation spectroscopy using a nanosecond white-light supercontinuum
スポンサーリンク
概要
- 論文の詳細を見る
Third-order sum frequency generation (TSFG) is one of the third-order nonlinear optical processes, and has the generation mechanism analogous to third harmonic generation (THG). By using a white-light supercontinuum, we can obtain broadband multiplex TSFG spectra. In the present study, we developed an electronically resonant TSFG spectrometer, and applied it to obtain TSFG spectra of hemoproteins. Analyzed TSFG ratio spectra clearly showed the resonant enhancement attributable to the electronic state of hemoproteins. This is a promising method for the imaging of electronic states of molecules inside living cells or tissues.
- Optical Society of Americaの論文
Optical Society of America | 論文
- A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure
- Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters