Multiperiod fringe projection interferometry using a backpropagation method for surface profile measurement
スポンサーリンク
概要
- 論文の詳細を見る
Interference fringes with different periods are projected on an object surface. There is a constant phase point where the phase of the fringe is kept at a constant value while the period is scanning. Multiple optical fields with different periods on the object surface are made from detected phases of the fringes. The multiple optical fields are backpropagated to the constant phase point of the phase where all of the phases of the multiple backpropagated fields become the same value and the amplitude of the sum of the multiple backpropagated fields becomes maximum. The distance of the backpropagation provides the position of the object surface. Some experiments show that this method can measure an object surface with discontinuities of several millimeters with high accuracy of several micrometers.
- Optical Society of Americaの論文
Optical Society of America | 論文
- A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure
- Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters