Linker-Extended Native Cyanovirin-N Facilitates PEGylation and Potently Inhibits HIV-1 by Targeting the Glycan Ligand
スポンサーリンク
概要
- 論文の詳細を見る
Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN. Therefore, linker-CVN (LCVN) was designed as a CVN derivative with a flexible and hydrophilic linker (Gly4Ser)3 at the N-terminus. The N-terminal α-amine of LCVN was PEGylated to create 10 K PEG-aldehyde (ALD)-LCVN. LCVN and 10 K PEG-ALD-LCVN retained the specificity and affinity of CVN for high mannose N-glycans. Moreover, LCVN exhibited significant anti-HIV-1 activity with attenuated cytotoxicity in the HaCaT keratinocyte cell line and MT-4 T lymphocyte cell lines. 10 K PEG-ALD-LCVN also efficiently inactivated HIV-1 with remarkably decreased cytotoxicity and pronounced cell-to-cell fusion inhibitory activity in vitro. The linker-extended CVN and the mono-PEGylated derivative were determined to be promising candidates for the development of an anti-HIV-1 agent. This derivatization approach provided a model for the PEGylation of biologic candidates without introducing point mutations.
- Public Library of Scienceの論文
- 2014-01-27
Public Library of Science | 論文
- Soldier-Specific Modification of the Mandibular Motor Neurons in Termites
- Molecular Mapping of Movement-Associated Areas in the Avian Brain : A Motor Theory for Vocal Learning Origin
- Can Ethograms Be Automatically Generated Using Body Acceleration Data from Free-Ranging Birds?
- Cardiac Arrest during Gamete Release in Chum Salmon Regulated by the Parasympathetic Nerve System
- Effects of Active Conductance Distribution over Dendrites on the Synaptic Integration in an Identified Nonspiking Interneuron