Design of a wavelength independent grating in the resonance domain
スポンサーリンク
概要
- 論文の詳細を見る
We propose using blazed gratings in the resonance domain with period larger than the wavelength for antireflection and polarization selection. The inherent problem in this region is wavelength dispersion, which is solved by analyzing the total reflectivity and electric field distribution. The positional relationship between the area of strong electric field, and the side and tip of the grating is crucial to the wavelength dispersion of total reflectivity.
- Optical Society of Americaの論文
Optical Society of America | 論文
- A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure
- Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters