Olfactory nerve recovery following mild and severe injury and the efficacy of dexamethasone treatment
スポンサーリンク
概要
- 論文の詳細を見る
To investigate factors that influence the degree of neural regeneration and recovery, we studied two olfactory nerve injury models. Transection of the olfactory nerves along the surface of the olfactory bulb was performed in OMP-tau-lacZ mice using either a flexible Teflon blade (mild injury) or a stainless steel blade (severe injury). Histological assessment of recovery within the olfactory bulb was made at 5, 14, and 42 days after injury. We used X-gal staining to label the degenerating and regenerating olfactory nerve fibers and immunohistochemical staining to detect the presence of reactive astrocytes and macrophages. Areas of injury-associated tissue were significantly smaller in the mild injury model, and at 42 days, the regenerated nerves had reestablished connections to the glomerular layer of the bulb. With severe injury, there were larger areas of injury-associated tissue, more astrocytes and macrophages, and a decrease in regenerated nerve fibers. When dexamethasone (DXM) was injected after severe injury, there was a significant reduction in injury-associated tissue, better nerve recovery, and fewer astrocytes and macrophages. These results demonstrate that recovery in the olfactory system varies with the severity of injury and that DXM treatment may have therapeutic value by reducing injury-associated tissue and improving recovery outcome.
- Oxford University Pressの論文
Oxford University Press | 論文
- Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis
- Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis
- Identification of cis-localization elements that target glutelin RNAs to a specific subdomain of the cortical endoplasmic reticulum in rice endosperm cells
- Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcription demonstrated inhibition of starch accumulation and induction of amino acid accumulation
- DNA-Binding Property of the Novel DNA-Binding Domain STPR in FMBP-1 of the Silkworm Bombyx mori