Effect of the spin-orbit interaction and the electron phonon coupling on the electronic state in a silicon vacancy
スポンサーリンク
概要
- 論文の詳細を見る
The electronic state around a single vacancy in silicon crystal is investigated by using the Green's function approach. The triply degenerate charge states are found to be widely extended and account for extremely large elastic softening at low temperature as observed in recent ultrasonic experiments. When we include the LS coupling λSi on each Si atom, the 6-fold spin-orbital degeneracy for the V+ state with the valence +1 and spin 1/2 splits into Γ doublet groundstates and Γ8 quartet excited states with a reduced excited energy of O(λSi/10). We also consider the effect of couplings between electrons and Jahn-Teller phonons in the dangling bonds within the second order perturbation and find that the groundstate becomes Γ8 quartet which is responsible for the magnetic-field suppression of the softening in B-doped silicon.
- IOP Publishingの論文
IOP Publishing | 論文
- A photon position sensor consisting of single-electron circuits
- Exciton coherence in clean single InP/InAsP/InP nanowire quantum dots emitting in infra-red measured by Fourier spectroscopy
- Power-law behavior and condensation phenomena in disordered urn models
- Filament discharge enhances field emission properties by making twisted carbon nanofibres stand up
- Observation of polarized luminescence from Jahn-Teller split states of self-trapped excitons in PbWO₄ by time-resolved spectroscopy