Numerical Analysis of Pressure on Cup Surface after THA
スポンサーリンク
概要
- 論文の詳細を見る
Estimation of the artificial hip joint contact area and pressure distribution during motions of daily life is important in predicting joint degeneration mechanism and implant wear. The purpose of this study was to develop a method of applying discrete element analysis (DEA) based on a rigid body spring model to artificial hip joint, and to analyze contact area and pressure distribution during different motions. Post-operative motion analyses of four basic motions, such as fast walking, slow walking, standing up and sitting down were performed by using VICON system and Kistler force plate. Implant orientation was obtained by matching the contours of 3D bone model and implant CAD model to those of the biplanar CR images. Triangular mesh at interior surface of cup model was considered as liner surface and used for applying DEA to artificial hip joint.Because stem model was considered to be a rigid body and consequential transformations occurred only inside the liner model, triangular mesh was considered to be a compressive spring respectively.The change of contact area and the pressure distribution under dynamic condition were calculated easily through these considerations, and rapid increase accompanied with change of area was observed in knee bending motions.
- 日本実験力学会の論文
日本実験力学会 | 論文
- 複数縁き裂の応力拡大係数の干渉効果(中央部き裂のKと各き裂のK,K_について)
- 複数縁き裂の応力拡大係数の干渉効果について : 一様引張りを受ける帯板で中央縁き裂に存在するK_Iのコースティックス法による解
- 複数縁き裂の応力拡大係数の干渉効果(中央部き裂のKと各き裂のK,K_について)
- 複数縁き裂の応力拡大係数の干渉効果(中央部き裂のKと各き裂のK,K_について)
- 複数縁き裂の応力拡大係数の干渉効果(中央部き裂のKと各き裂のK,K_について)