Sensitivity dependences on side length and aspect ratio of a diaphragm in a glass-based guided-wave optical pressure sensor
スポンサーリンク
概要
- 論文の詳細を見る
According to our previous theoretical study, sensor sensitivity is proportional to the cube of the side length of the diaphragm in a guided-wave optical pressure sensor consisting of a glass diaphragm and a single-mode waveguide on the diaphragm. Also, to obtain higher sensitivity, an aspect ratio of the diaphragm should be approximately 1 for two waveguide positions: the center and the edge of the diaphragm. In this study, sensitivity dependences on side length and aspect ratio of the diaphragm were experimentally examined. The obtained experimental results strongly supported the theoretical predictions.
- Optical Society of Americaの論文
Optical Society of America | 論文
- A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure
- Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters