On elliptic function fields with the class number p+1 over finite prime fields of characteristic p≠2,3
スポンサーリンク
概要
- 論文の詳細を見る
Let k be a finite prime field of characteristic p which differs from 2 and 3. Let K be an elliptic function field over k and denote by h the class number of K, It is shown that, in the case where K is defined by the equation y2=x3-a, (a≠0, a∈k), a necessary and sufficient condition of the equality h=p+1 is the congruence p≡2 mod. 3, and that, in the case where K is defined by the equation y2=x3-ax, (a≠0, a∈k), a necessary and sufficient condition of the equality h=p+1 is the congruence p≡3 mod. 4.
- 長崎大学教育学部の論文
- 1973-02-28
著者
関連論文
- On Certain Congruences for Gauss Sums
- 超楕円関数体の類数にぃついて〔英文〕
- 楕円関数体の類数についての一注意〔英文〕
- On elliptic function fields with the class number p+1 over finite prime fields of characteristic p≠2,3
- A note on trascendental elements of an algebraic function field of one variable
- A note on k-modules in an algebraic function field K/k of one variable
- On elliptic function fields with the class number p+1 over finite prime fields of characteristic p≠2,3
- A note on trascendental elements of an algebraic function field of one variable
- A note on k-modules in an algebraic function field K/k of one variable