Travelling Front Solutions Arising in a Chemotaxis-Growth Model
スポンサーリンク
概要
- 論文の詳細を見る
We consider a bistable reaction-diffusion-advection system describing the growth of biological individuals which move by diffusion and chemotaxis. In order to know the dynamics of growth patterns arising in this system, we use the singular limit analysis to study the transversal stability of travelling front solutions in a strip domain. It is shown that travelling front solutions are transversally stable when the chemotactic effect is weak and, when it becomes stronger, they are destabilized. Moreover, numerical simulations demonstrate that the destabilized solution evolves into complex patterns with dynamicnetwork-like structures.
- 京都大学数理解析研究所の論文
- 2000-04-00
京都大学数理解析研究所 | 論文
- 磁性流体界面における磁場解析と安定性解析 (非線形波動現象の数理と応用--RIMS研究集会報告集)
- Kahler geometric structures in generalized coherent state systems (量子科学における双対性とスケール--RIMS共同研究報告集)
- Multi-channel系における相補性と双対性 (量子科学における双対性とスケール--RIMS共同研究報告集)
- Residually finite one relator groups and their group rings (代数と言語のアルゴリズムと計算理論--RIMS研究集会報告集)
- 量子グラフ序説 (量子科学における双対性とスケール--RIMS共同研究報告集)