Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells
スポンサーリンク
概要
- 論文の詳細を見る
Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.
- SPRINGERの論文
SPRINGER | 論文
- Comparisons of germination traits of alpine plants between fellfield and snowbed habitats
- Photoreceptor Images of Normal Eyes and of Eyes with Macular Dystrophy Obtained In Vivo with an Adaptive Optics Fundus Camera
- Effect of Electrical Stimulation on IGF-1 Transcription by L-Type Calcium Channels in Cultured Retinal Muller Cells
- In Vivo Measurements of Cone Photoreceptor Spacing in Myopic Eyes from Images Obtained by an Adaptive Optics Fundus Camera
- Optical Quality of the Eye Degraded by Time-Varying Wavefront Aberrations with Tear Film Dynamics