Influence of electromagnetic polarization on the whole-body averaged SAR in children for plane-wave exposures
スポンサーリンク
概要
- 論文の詳細を見る
The present study investigated the whole-body averaged specific absorption rate (WBSAR) in an infant model with the finite-difference time-domain method. The focus of the present study is the effect of polarization of incident electromagnetic waves on the WBSAR. This is because most previous studies investigated the WBSAR for plane-wave exposure with a vertically aligned electric field. Our computational results revealed that the WBSAR for plane-wave exposure with a vertically aligned electric field is smaller than that with a horizontally aligned electric field for frequencies above 2 GHz. The main reason for this difference is attributed to be the component of the surface area perpendicular to the electric field of the incident wave.
- Institute of Physics Publishingの論文
- 2009-02-21
Institute of Physics Publishing | 論文
- Electron transport in carbon tetrafluoride along a magnetically neutral plane between constant gradient antiparallel magnetic fields
- Twist quantization of string and B field background
- FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure
- Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz
- Shear viscosity of the quark matter