回転円板と担体を用いた有機物酸化・硝化・脱窒
スポンサーリンク
概要
- 論文の詳細を見る
立体格子状回転円板反応槽内の円板間隔を大きくした場合の有機物酸化実験および活性汚泥法による硝化と担体を用いた硝化・脱窒の実験の結果に検討を加えた。結論を以下にまとめる。①円板間隔を大きくすると支持体間が生物膜で閉塞せず生物膜内への酸素供給能が低下せず,高負荷運転時における最大BOD除去量は高くなる。②液本体BOD濃度が約20mg/lで硝化量は最大となり,担体を添加すると硝化量は約2倍となる。③硝化が生じている担体槽では液本体NH4-N濃度が約50mg/l,負荷量900g/日/m3でNH4-N除去量は最大となる。④水素供与体として原水を用いた担体添加槽では脱窒率は約50%となり,T-N除去率は約25%得られる。Bridging was reported as the cause of lower efficiency of BOD removal when a space between disks of the cubic latticed contactor is 10 mm and BOD concentration is higher than 300 mg/l. Objective of this study is to examine removal efficiency of organic matter and nitrogen by the cubic latticed contactor and the fluidized-bed carrier, respectively. Oxidation efficiency of organic matter was compared between a five-disk contactor with a space of 20 mm and a six-disk contactor with a space of 10 mm. Nitrification-denitrification by the fluidized-bed carrier was compared with an activated sludge system. It was found that the wider space between disks of the cubic latticed contactor (20 mm) increased the efficiency in organic removal as it could prevent bridging and promote oxygen transfer into biofilm. Nitrification rate of the fluidized-bed carrier was two times higher than that of the activated sludge system. The removal efficiency of NH4-N of the carriers reached its maximum when NH4-N loading was 900 g/m3/day and decreased drastically when NH4-N concentration exceeded 50 mg/l. Using raw wastewater as a hydrogen donor, removal efficiency of NO2-N and NO3-N in the fluidized-bed carrier tank was about 50% while T-N removal efficiency of around 25% was achieved.
- 2011-02-23
論文 | ランダム
- ノックの現象解明とモデリング
- 高温におけるすすクラスタ生成の化学動力学
- 部分分解アンモニア添加によるディーゼル排気中の窒素酸化物の低減法
- (20)すすおよびPAHの生成に関する研究
- 夏期の睡眠時における気流曝露の影響に関する実験的研究