Robust finger motion classification using frequency characteristics of surface electromyogram signals
スポンサーリンク
概要
- 論文の詳細を見る
Finger motion classification using surface electromyogram (EMG) signals is currently being applied to myoelectric prosthetic hands with methods of pattern classification. It can be used to classify motion with great accuracy under ideal circumstances. However, the precision of classification falling to change the quantity of EMG feature with muscle fatigue has been a problem. We addressed this problem in this study, which was aimed at robustly classifying finger motion against changes in EMG features with muscle fatigue. We tested the changes in EMG features before and after muscle fatigue and propose a robust feature that uses a methods of estimating tension in finger motion by taking muscle fatigue into consideration. © 2012 IEEE.
論文 | ランダム
- 電子写真の二成分現像剤挙動シミュレータの開発
- P-179 薬剤管理 : 医薬品の情報必要度と企業の情報提供・収集体制の比較
- P-71 粉末製剤の粉体特性と調剤性の評価(第 2 報)
- ポリエチレンオキサイド-ι-カラギーナン混合物の軟膏基剤への応用に関する検討
- 医薬開発における物性研究の現状と展望