Robust finger motion classification using frequency characteristics of surface electromyogram signals
スポンサーリンク
概要
- 論文の詳細を見る
Finger motion classification using surface electromyogram (EMG) signals is currently being applied to myoelectric prosthetic hands with methods of pattern classification. It can be used to classify motion with great accuracy under ideal circumstances. However, the precision of classification falling to change the quantity of EMG feature with muscle fatigue has been a problem. We addressed this problem in this study, which was aimed at robustly classifying finger motion against changes in EMG features with muscle fatigue. We tested the changes in EMG features before and after muscle fatigue and propose a robust feature that uses a methods of estimating tension in finger motion by taking muscle fatigue into consideration. © 2012 IEEE.
論文 | ランダム
- 日米ビジネスに見る新たな価値創造 ソフトパワー「日本食」の活かし方
- インドの文明とIT産業--インドのITソフト・パワーは文明的DNAによるのか?[含 質疑応答]
- GLOBAL 新チャイナの定義 中国「平和的台頭」の幻惑--きらびやかな外面と軍事力増強の矛盾に、混乱するほど思う壷。ソフトパワーの遅れを直視せよ。
- 「ハード・パワー」と「ソフト・パワー」を駆使する 補完企業との戦略的パートナーシップ (「勝利」の戦略論)
- 中国の「対外宣伝」の変容とインターネット宣伝