Large Deviation Principles for Posterior Distributions of the Normal Parameters
スポンサーリンク
概要
- 論文の詳細を見る
Suppose that X1,X2,... are conditionally i.i.d. random variables withdistribution Pθ given =θ,where is an unknown parameter. If Pθis a normal distribution with mean θ and known variance σ2, and if theprior of is chosen from the conjugate family N(μ,v2) or proportionalto the Lebesgue measure, then it follows that the posterior distributionsgiven X1,...,Xn obey a large deviation principle with a rate function. IfPθ is a normal distribution with known mean and unknown precision θ,and if as a prior we choose the gamma distribution with parameters αand β or the improper distribution (1/θ)dθ,the Jeffereys' prior, thenthe posterior distributions of given X1,...,Xn are shown to satisfy alarge deviation principle. The G artner-Ellis theorem plays the key roleto prove these large deviation principles for the posterior distributions.
- 2012-03-25
論文 | ランダム
- Immunohistochemical Study of Alkaline Phosphatase on Bone and Soft Part Tumors : with Special Notes on Giant Cells
- Avascular Craniotomy by the use of Selective Brain Cooling with Hemodilution and Fibrinolytic Activation
- Magnetic-field-induced Synthesis of Co Filtering Film Consisting of Co Nanowires
- シンコニジン修飾白金-炭素触媒によるベンゾイルギ酸エチルの不斉水素化--触媒調整法と不斉収率との関係
- キナアルカロイド修飾白金-アルミナ触媒によるα-ケトエステルの不斉水素化