Large Deviation Principles for Posterior Distributions of the Normal Parameters
スポンサーリンク
概要
- 論文の詳細を見る
Suppose that X1,X2,... are conditionally i.i.d. random variables withdistribution Pθ given =θ,where is an unknown parameter. If Pθis a normal distribution with mean θ and known variance σ2, and if theprior of is chosen from the conjugate family N(μ,v2) or proportionalto the Lebesgue measure, then it follows that the posterior distributionsgiven X1,...,Xn obey a large deviation principle with a rate function. IfPθ is a normal distribution with known mean and unknown precision θ,and if as a prior we choose the gamma distribution with parameters αand β or the improper distribution (1/θ)dθ,the Jeffereys' prior, thenthe posterior distributions of given X1,...,Xn are shown to satisfy alarge deviation principle. The G artner-Ellis theorem plays the key roleto prove these large deviation principles for the posterior distributions.
- 2012-03-25
論文 | ランダム
- チタニウム治金の種々相
- 軽金属の結晶粒を微細化する為に現今行われている諸機構
- ECF漂白における操業上の問題点と対策 (パルプ特集)
- 新苛性化設備の操業経験
- 2A20 MOT教育の基本方式案と新経営制度の「ガバナンス」への対応(MOT教育の質的検討)