Experimental observation of slow light in photonic crystal coupled waveguides
スポンサーリンク
概要
- 論文の詳細を見る
We experimentally demonstrate wideband dispersion-free slow light in chirped photonic crystal coupled waveguides (PCCW). In unchirped PCCWs, the zero group velocity can occur at an inflection point of a photonic band of even symmetric mode. The even symmetric mode is selectively excited by connecting the device with input and output waveguides through optimized branch and confluence structures. In the device fabricated on SOI substrate, a large increase in group delay was observed with a maximum group index of 140 and the zero group velocity dispersion at the inflection point. Photonic bands estimated from the group delay characteristics corresponded to calculated ones. In the chirped PCCWs, the group velocity dispersion was internally compensated and the nearly constant group index of 50-60 was obtained in a wavelength bandwidth of 10 nm. The dispersion compensation was also confirmed through the transmission measurement of sub-ps optical pulses.
- Optical Society of Americaの論文
- 2007-08-06
Optical Society of America | 論文
- A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure
- Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters