The freeness and minimal free resolutions of modules of differential operators of a generic hyperplane arrangement
スポンサーリンク
概要
- 論文の詳細を見る
Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n ≥ 3, r > n, m > r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n ≥ 3, r > n, m < r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1.
- 2012-02-01
論文 | ランダム
- 直下型地震の発生を想定した都市圏道路網の分散・集中特性の性能評価モデルに関する研究
- 大規模地震による街路閉塞予測シミュレーションの構築
- 植物の生体電位変化による地震前兆の観測について
- 災害復興計画における都市計画と事業進展状況に関する研究 - 北但馬地震(1925)における城崎町, 豊岡町の事例 -
- P58 三宅島の地震・地殻変動観測