Precise determination of the nonequilibrium tricritical point based on Lynden-Bell theory in the Hamiltonian mean-field model
スポンサーリンク
概要
- 論文の詳細を見る
Existence of a nonequilibrium tricritical point has been revealed in the Hamiltonian mean-field model by a nonequilibrium statistical mechanics. This statistical mechanics gives a distribution function containing unknown parameters, and the parameters are determined by solving simultaneous equations depending on a given initial state. Due to difficulty in solving these equations, pointwise numerical detection of the tricritical point has been unavoidable on a plane characterizing a family of initial states. In order to look into the tricritical point, we expand the simultaneous equations with respect to the order parameter and reduce them to one algebraic equation. The tricritical point is precisely identified by analyzing coefficients of the reduced equation. Reentrance to an ordered phase in a high-energy region is revisited around the obtained tricritical point.
論文 | ランダム
- 電子ビーム露光法-2- (電子ビームの応用(技術ノート))
- ニクロム蒸着膜の組成と電気特性 (固体素子の現状と将来(特集))
- 日本飛行機(株)の生産管理情報システム
- 光の偏向制御
- 短期経済計算の一手段としての効果貸借対照表