GALOIS-THEORETIC CHARACTERIZATION OF ISOMORPHISM CLASSES OF MONODROMICALLY FULL HYPERBOLIC CURVES OF GENUS ZERO
スポンサーリンク
概要
- 論文の詳細を見る
Let l be a prime number. In the present paper, we prove that the isomorphism class of an l-monodromically full hy-perbolic curve of genus zero over a finitely generated extension of the field of rational numbers is completely determined by the kernel of the natural pro-l outer Galois representation associated to the hyperbolic curve. This result can be regarded as a genus zero analogue of a result due to S. Mochizuki which asserts that the isomorphism class of an elliptic curve which does not admit complex multiplication over a number field is completely determined by the kernels of the natural Galois representations on the various finite quotients of its Tate module.
論文 | ランダム
- 座位におけるハンドヘルドダイナモメーターを用いた肩筋力測定方法とその再現性
- 506 上肢PNFパターンへの抵抗運動が下肢筋へおよぼす発散効果(理学療法基礎系19)
- 594 頚髄損傷患者の上肢筋力について : ハンドヘルドダイナモメーターによる測定(脊髄疾患)
- 3-7.熱天秤を用いたバイオマスの急速昇温水蒸気ガス化の検討((2)ガス化・合成II,Session 3 バイオマス等)
- 5-5 熱化学再生バイオマスガス化による水素製造(Session 5 バイオマス)