GALOIS-THEORETIC CHARACTERIZATION OF ISOMORPHISM CLASSES OF MONODROMICALLY FULL HYPERBOLIC CURVES OF GENUS ZERO
スポンサーリンク
概要
- 論文の詳細を見る
Let l be a prime number. In the present paper, we prove that the isomorphism class of an l-monodromically full hy-perbolic curve of genus zero over a finitely generated extension of the field of rational numbers is completely determined by the kernel of the natural pro-l outer Galois representation associated to the hyperbolic curve. This result can be regarded as a genus zero analogue of a result due to S. Mochizuki which asserts that the isomorphism class of an elliptic curve which does not admit complex multiplication over a number field is completely determined by the kernels of the natural Galois representations on the various finite quotients of its Tate module.
論文 | ランダム
- 金属材料の塑性変形領域におけるひずみゲージ接着による補強効果
- 負荷および全ひずみ経路を急変させたときの金属材料の塑性挙動 : ひずみ増分理論を用いたAl特性に対する理論計算
- 応力-ひずみ特性が弾塑性応力状態に及ぼす影響
- 引張りを受ける有孔帯板の応力集中率 : 円孔直径が非常に大きい場合
- 有限要素法による数値実験 : 物体境界近傍の要素分割法と解の平滑化