Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations
スポンサーリンク
概要
- 論文の詳細を見る
In this article, we propose a new estimation methodology to deal with PCA for high-dimension, low-sample-size (HDLSS) data. We first show that HDLSS datasets have different geometric representations depending on whether a ρ-mixing-type dependency appears in variables or not. When the ρ-mixing-type dependency appears in variables, the HDLSS data converge to an n-dimensional surface of unit sphere with increasing dimension. We pay special attention to this phenomenon. We propose a method called the noise-reduction methodology to estimate eigenvalues of a HDLSS dataset. We show that the eigenvalue estimator holds consistency properties along with its limiting distribution in HDLSS context. We consider consistency properties of PC directions. We apply the noise-reduction methodology to estimating PC scores. We also give an application in the discriminant analysis for HDLSS datasets by using the inverse covariance matrix estimator induced by the noise-reduction methodology.
論文 | ランダム
- 高度INにおける通信サービス仕様情報の構成法と生成法
- 高度IN分散システムにおけるプログラム更新手順の検討
- 高度INにおける通信サービス制御情報の生成法
- INサービス管理におけるファイル配備法の検討
- 高度INにおけるサービス管理端末のソフトウェア構造