Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations
スポンサーリンク
概要
- 論文の詳細を見る
In this article, we propose a new estimation methodology to deal with PCA for high-dimension, low-sample-size (HDLSS) data. We first show that HDLSS datasets have different geometric representations depending on whether a ρ-mixing-type dependency appears in variables or not. When the ρ-mixing-type dependency appears in variables, the HDLSS data converge to an n-dimensional surface of unit sphere with increasing dimension. We pay special attention to this phenomenon. We propose a method called the noise-reduction methodology to estimate eigenvalues of a HDLSS dataset. We show that the eigenvalue estimator holds consistency properties along with its limiting distribution in HDLSS context. We consider consistency properties of PC directions. We apply the noise-reduction methodology to estimating PC scores. We also give an application in the discriminant analysis for HDLSS datasets by using the inverse covariance matrix estimator induced by the noise-reduction methodology.
論文 | ランダム
- 有機触媒を用いる酸-塩基相互作用の制御と有機アニオン種の形成に基づく不斉合成 (特集 キラル化合物開発の新展開)
- 東海から発信する産学官連携の新しいトレンド
- 他分野でいま何が話題?(6)人間工学 人の特性に仕事や環境を適合させる科学技術
- 99 噴門部癌切除症例の検討(第27回日本消化器外科学会総会)
- 大腸多発癌症例の検討