Bayesian online changepoint detection to improve transparency in human-machine interaction systems
スポンサーリンク
概要
- 論文の詳細を見る
This paper discusses a way to improve transparency in human-machine interaction systems when no force sensors are available for both the human and the machine. In most cases, position-error based control with fixed proportional-derivative (PD) controllers provides poor transparency. We resolve this issue by utilizing a gain switching method, switching them to be high or low values in response to estimated force changes at the slave environment. Since the slave-environment forces change abruptly in real time, it is difficult to set the precise value of the threshold for these gain switching decisions. Moreover, the threshold value has to be observed and tuned in advance to utilize the gain switching approach. Thus, we adopt Bayesian online changepoint detection to detect the abrupt slave environment change. This changepoint detection is based on the Bayes' theorem which is typically used in probability and statistics applications to generate the posterior distribution of unknown parameters given both data and prior distribution. We then show experimental results which demonstrate the Bayesian online changepoint detection has the ability to discriminate both free motion and hard contact. Additionally, we incorporate the online changepoint detection in our proposed gain switching controller and show the superiority of our proposed controller via experiment. ©2010 IEEE.
論文 | ランダム
- 手続上の留意点について 7月10日までに申告・納付の手続を (特集 平成21年度 労働保険の年度更新手続等について)
- 平成21年度労働保険の年度更新手続等について 申告・納付期限の7月10日までに手続を
- 複数請求項に係る発明についての一部訂正の可否 最高裁第一小法廷平成20年7月10日 平成19年(行ヒ)第318号特許取消決定請求事件
- 盛岡市中心部において春から初夏にかけて開花するイネ科植物の花粉生産量
- 安全工学シンポジュウム2008の状況