Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
スポンサーリンク
概要
- 論文の詳細を見る
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
- 2011-03-28
論文 | ランダム
- 小児期における成人病予防事業の取り組み
- 学校経営とスクールミドル(11)スクールミドルを〈哲学する〉
- アジア・太平洋地域の視点からみた中小企業の戦略(基調報告要旨) (第7回中小企業国際シンポジウムより(特別レポ-ト))
- 市町村税について
- 「80年代ビジョン」の意義と中小企業政策の課題