Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
スポンサーリンク
概要
- 論文の詳細を見る
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
- 2011-03-28
論文 | ランダム
- ニワトリ胚筋組織のミクロソーム分画にミオシンが含まれるか?
- ニワトリ胚の筋組織の分化III. : ニワトリ胚のミオシンとアクチン
- ニワトリ胚の発育中ビタミンK_1のK_への転換
- ニワトリ胚の筋肉組織の分化 : II初期筋肉細胞中に現われる細繊維の同定(発生)
- ニワトリ胚の筋肉組織の分化 : I.初期変化(発生)