RBF interpolation and Gaussian process regression through an RKHS formulation
スポンサーリンク
概要
- 論文の詳細を見る
MI: Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダストリ教育研究拠点」Radial Basis Function (RBF) interpolation is a common approach to scattered data interpolation. Gaussian Process regression is also a common approach to estimating statistical data. Both techniques play a central role, for example, in statistical or machine learning, and recently they have been increasingly applied in other fields such as computer graphics. In this survey we describe the formulation of both techniques as instances of functional regression in a Reproducing Kernel Hilbert Space. We then show that the RBF and Gaussian Process techniques can in some cases be reduced to an identical formulation, differing primarily in their assumptions on when the data locations and values are known, as well as in their (respectively) deterministic and stochastic perspectives. The scope and effectiveness of the RBF and Gaussian process techniques are illustrated through several applications in computer graphics.
- 2011-04-04
論文 | ランダム
- 塩素イオン注入した窒化チタン被覆工具のステンレス鋼切削における性能
- テーパー管形式角形鋼管柱梁接合部パネルの弾塑性挙動
- 22233 絞り管形式角形鋼管柱・梁接合部パネルに関する研究 : その2. 考察
- 22232 絞り管形式角形鋼管柱・梁接合部パネルに関する研究 : その1. 実験
- 高病原性鳥インフルエンザに関する不安喚起モデルの妥当性の検討