Experimental and theoretical demonstration of validity and limitations in fringe-resolved autocorrelation measurements for pulses of few optical cycles
スポンサーリンク
概要
- 論文の詳細を見る
Using 3.6- and 5.3-fs pulses, we demonstrated theoretically and experimentally that fringe-resolved autocorrelation (FRAC) traces are distorted by bandwidth limitations of the second-harmonic generation (SHG) in 10-μm-thick, type I β-BaB2O4 for pulses shorter than sub-5 fs. In addition, detailed numerical analysis of the SHG showed that the optimum crystal angle where the FRAC trace distortion becomes minimum is in disagreement not only with the phase-matching angle but also with the angle where the FRAC signal intensity becomes maximum. Furthermore, the apparent pulse duration measured at a nonoptimum angle was confirmed to become shorter than that of its transform-limited pulse, in excellent agreement with the calculated result.
- Optical Society of Americaの論文
- 2004-06-14
Optical Society of America | 論文
- A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure
- Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters