自己組織化マップを用いた教示による強化学習の高速化手法の提案
スポンサーリンク
概要
- 論文の詳細を見る
A new pre-teaching method for reinforcement learning using Self-Organizing Map (SOM) is described. The purpose of our study is to increase the learning rate using small number of teaching data generated by a human expert. In our method, the SOM is used to generate initial teaching data for the reinforcement learning agent from a few teaching data. The reinforcement learning function of the agent is initialized by using the teaching data generated by the SOM so as to increase the probability of selecting the optimal actions estimated by the SOM. Because the agent can get high rewards from the start of reinforcement learning, it is expected to increase the learning rate. The results of two computer simulations, mobile robot navigation and pursuit game, showed that the learning rate increased although the human expert had showed only a few teaching data.
- 2004-06-25
論文 | ランダム
- 冬季オホーツク海南西部におけるラジオゾンデ観測
- Cd(S:Se)蒸着膜の光電導(V) : イオン結晶・光物性
- オホーツク海南西部海氷上の大気場の熱力学的特徴 : 1998年・1999年ラジオゾンデ観測(北日本の気象と海象)(平成11年度共同利用研究集会講演要旨)
- Cd(SiSe)蒸着膜の光電導(IV) : イオン結晶・光物性 : EL・光伝導
- 1989年以降のオホーツク海南部の海氷の激減と, 最近のアリューシャン低気圧の弱まりとの関係