Hitting Point Distribution of Two-Dimensional Random Walk
スポンサーリンク
概要
- 論文の詳細を見る
It is known that each path of the 2-dimensional (standard) random walk starting at arbitrary point on the plane passes the x-axis in the long run with probability 1. The purpose of this article is to calculate the probability distribution of the point where a particle of random walk for the first time hits the x-axis. The distribution is formulat- ed in terms of the starting point of the particle. It is also applied to the solution of the discrete Dirichlet problem for the half plane. Since the random walk can be considered as a discretization of the Brownian motion, the above distribution should be closely related to the Cauchy distribution, which is well known as the hitting point distribution of the 2-dimensional Brownian motion to the x-axis. This relation is also mentioned later. In the last part, the 2-dimensional biased random walk which moves at each step in four directions with different probabilities is considered.
- 愛知教育大学の論文
- 1994-02-10
愛知教育大学 | 論文
- Nazionalsozialismus und Neonazis im sozialkritischen Kriminalroman ―gezeigt an Ruhrgebiets-Krimis
- Landeskunde und Landerkunde : Zwei Konzepte und ihre Vermittlung im Unterricht in Japan
- 教養と戦争
- イギリス・ナショナルカリキュラムと健康教育 : 健康教育の位置づけと健康教育カリキュラムの内容に関して
- 梅田先生との思い出