A rough set approach to multiple dataset analysis
スポンサーリンク
概要
- 論文の詳細を見る
In the area of data mining, the discovery of valuable changes and connections (e.g., causality) from multiple data sets has been recognized as an important issue. This issue essentially differs from finding statistical associations in a single data set because it is complicated by the different data behaviors and relationships across multiple data sets. Using rough set theory, this paper proposes a change and connection mining algorithm for discovering a time delay between the quantitative changes in the data of two temporal information systems and for generating the association rules of changes from their connected decision table. We establish evaluation criteria for the connectedness of two temporal information systems with varying time delays by calculating weight-based accuracy and coverage of the association rules of changes, adjusted by a fuzzy membership function.http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description
論文 | ランダム
- 雌ラットにおける血中dehydroepiandrosteroneの動態に関する研究
- バイコロジーによる都市の回復--自転車は都市のスリッパだ (コミュニティ--共同社会の復権(特集))
- 脊髄損傷の病理の病因論(主題 : 脊髄損傷のリハビリテーション)(第6回日本リハビリテーション医学会医師卒後教育研修会)
- イオンビームスパッタおよびイオンビームアシスト堆積法で形成したFe薄膜の耐食性
- 社会復帰を阻害する因子 : 特に労災患者について(脊髄損傷患者のリハビリテーション)(第5回日本リハビリテーション医学会総会より)