The analytic torsions of the line bundles over the quadrics
スポンサーリンク
概要
- 論文の詳細を見る
The analytic torsions of the line bundles over the quadrics are computed directly from the defining spectral zeta functions associated with the Dolbeault complex. The spectral data needed are calculated using the branching rule for the symmetric pair (SO(n+2), SO(2)×SO(n)) given by the author in [2]. The spectral zeta functions for the analytic torsions are shown to be of the form treated by the author in [3] and the derivatives at $0$ are computed by the method developed there. The result is compared with the well-known Kai Köhler's paper [1]. The cancellation of the spectral zeta functions is observed, on the level of the spectral data.
- 2010-11-12
論文 | ランダム
- キバチ類によるスギ・ヒノキ材変色被害に対する防除方法の検討
- スギ・ヒノキ間伐木の伐倒時期ならびに玉切り方法がニホンキバチ成虫発生数に及ぼす影響
- スギ・ヒノキ間伐木の伐倒時期ならびに玉切り方法がニホンキバチ成虫発生数に及ぼす影響
- ニホンキバチの共生菌を人工接種したスギとヒノキの曲げ強度性能
- スギの秋期間伐における伐倒木の玉切り処理によるニホンキバチ成虫発生量の抑制効果