Index-Exciting CAViaR: A New Empirical Time-Varying Risk Model
スポンサーリンク
概要
- 論文の詳細を見る
Instead of assuming the distribution of return series, Engle and Manganelli (2004) propose a new Value-at-Risk (VaR) modeling approach, Conditional Autoregressive Value-at-Risk (CAViaR), to directly compute the quantile of an individual asset's returns which performs better in many cases than those that invert a return distribution. In this paper we explore more flexible CAViaR models that allow VaR prediction to depend upon a richer information set involving returns on an index. Specifically, we formulate a time-varying CAViaR model whose parameters vary according to the evolution of the index. The empirical evidence reported in this paper suggests that our time-varying CAViaR models can do a better job for VaR prediction when there are spillover effects from one market or market segment to other markets or market segments.
論文 | ランダム
- BBC教養番組の教材化 : 「人類限りない挑戦」('Explorations')の利用方法
- 一般市民向け教養講座へのケーブルテレビの活用
- 社会の進展に対応した理科教育の展開--TVの一般教養番組を生かした高校理科の総合的学習を考える
- 2N-7 教養番組のテキスト教材における手順の構造化
- 人と社会 インタビュ- NHK教養番組部ディレクタ-、長野パラリンピックメダリスト 大日方邦子さん