Adhesion, Spreading, and Proliferation of Endothelial Cells on Charged Hydrogels
スポンサーリンク
概要
- 論文の詳細を見る
As soft and wet scaffolds, hydrogels are attractive materials for tissue engineering due to their similarity in structure and properties to living tissue. For designing hydrogels as potential artificial tissues, some basic requirements, such as a high level of cellular viability, suitable viscoelasticity, and high mechanical strength are required. However, it is difficult to develop a hydrogel that satisfies even two of these requirements at the same time. In this review, our recent advances in developing synthetic hydrogels as cell culture scaffold are summarized. We found that endothelial cells (ECs) can proliferate directly on some synthetic hydrogels with negative charge, so long as the hydrogels have a Zeta potential lower than c.a. -20mV, and the cell behavior can be controlled by adjusting the hydrogel's charge density. Furthermore, confluent EC monolayers cultured on the hydrogels show excellent platelet compatibility, compared to EC monolayer cultured on a polystyrene plate. On the basis of the above study, we have further developed micro-patterned hydrogels for selective cell spreading, proliferation, and orientation. We have also developed tough hydrogels on which cells show viability. These results will promote the potential applications of synthetic hydrogels in tissue engineering.
- Taylor & Francisの論文
著者
関連論文
- Spontaneous Redifferentiation of Dedifferentiated Human Articular Chondrocytes on Hydrogel Surfaces
- Study on the Sliding Friction of Endothelial Cells Cultured on Hydrogel and the Role of Glycocalyx on Friction Reduction
- Surfactant-Induced Friction Reduction for Hydrogels in the Boundary Lubrication Regime
- Robust bonding and one-step facile synthesis of tough hydrogels with desirable shape by virtue of the double network structure
- Ultrathin tough double network hydrogels showing adjustable muscle-like isometric force generation triggered by solvent
- Gene expression, glycocalyx assay, and surface properties of human endothelial cells cultured on hydrogel matrix with sulfonic moiety : Effect of elasticity of hydrogel
- Adhesion, Spreading, and Proliferation of Endothelial Cells on Charged Hydrogels
- In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities
- Novel Developed Systems and Techniques Based on Double-Network Principle
- Hydrogels with a macroscopic-scale liquid crystal structure by self-assembly of a semi-rigid polyion complex