Nonlinear regression modeling via the lasso-type regularization
スポンサーリンク
概要
- 論文の詳細を見る
MI: Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダストリ教育研究拠点」We consider the problem of constructing nonlinear regression models with Gaussian basis functions, using lasso regularization. Regularization with a lasso penalty is an advantageous in that it reduces some unknown parameters in linear regression models toward exactly zero. We propose imposing a weighted lasso penalty on a nonlinear regression model and thereby selecting the number of basis functions effectively. In order to select tuning parameters in the regularization method, we use model selection criteria derived from information-theoretic and Bayesian viewpoints. Simulation results demonstrate that our methodology performs well in various situations.
論文 | ランダム
- ドライアイスブラストの洗浄力向上を目指した固体二酸化炭素冷却システム
- 短期間の運動が血球数およびリンパ球サブセットに及ぼす影響
- 殺菌剤オキシン銅のキトサン誘導体への吸着
- Systematic Diversity under the Conditions of Globalisation and Integration(Part I : Globalization and the Transformation of Governance,)
- Lexical diversity in L2 learners